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Introduction

Motivation for studying interaction of proteins with lipid membranes
(membrane-associated, not integral membrane proteins)

a). biochemical processes:  protein binding and conformational changes 
regulate ions channels, play important roles in cellular communication, 
immune response, etc.  

b.  nanoscience:  control/direct the formation and growth of
supramolecular structures (motor protein highways, protein complexes)

c). mechanisms of toxin assault on cell membranes

d).  biosensors - binding modes determine chemical signals, 
dictate sensor response, orientation of antibodies



Metal-ion coordination with histidines

His-113

His-116

His-36

His-48

Langmuir monolayers of 
metal-chelating lipids

strong interaction between histidines and divalent metal ions: 
Cu2+ > Ni2+ >> Ca2+ or Zn2+

myoglobin  (horse heart )



Metal-ion coordination with histidines

-Used for protein separation and purification: 

recombinant proteins with “His” tags

naturally occurring proteins with surface-exposed histidines 
can act as contaminants on chromatographic columns of this type

in some cases the goal is to purify naturally occurring proteins
with surface-exposed histidines

-A general method for creating biofunctionalized surfaces

Fundamental understanding of adsorption process needed to:
control orientation, tune energetics (selectivity), avoid denaturation



Structure of myoglobin

Dimensions [Å]:
44 x 44 x 20

orientation of adsorbed protein depends upon the distribution of histidines

His-48 His-81



Structure of myoglobin

orientation of adsorbed protein depends upon the distribution of histidines

His-113

His-116

His-36

His-48



Experimental set-up

pump

neutron or 
X-ray beam

circulate metal ions and myoglobin into the subphase 
underneath the lipid layer



X-ray and neutron grazing incidence 
scattering techniques

Fix qz here for grazing incidence 
diffraction (GID)
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detectorNeutron, X-ray
source

X-ray and neutron grazing incidence 
scattering techniques

neutron 
reflection
(Amino acid 

concentration profile)

grazing incidence X-ray diffraction
(2-D crystal structure - lipids and proteins)

X-ray 
reflection

(lipid and protein
layer profiles)

Langmuir monolayers



Results

a. Protein conformation / orientation   (NR, XR)
-final state
-evolution of layer structure with time

b.  Evidence for two stages  (GIXD, NR, XR)
-stage 1:  reversible
-stage 2: irreversible



Results: A.  protein conformation

neutron (and X-ray) reflection
probes amino acid segment profile

end-on side-on denaturation



Results  - surface pressure

Slow kinetics allow study of evolution of protein layer 
during the adsorption process!
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Results  - X-ray reflection
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In-house X-ray source is sufficient to get the dimension of 
the protein layer in the final state!

chelated Cu2+ ions,  10 µM  myo.

with myo.

no myo.



Results  - X-ray reflection

DSIDA
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Neutron reflection,   H2O  (time dependence)

Cu2+ ions Ni2+ ions

Each curve obtained in roughly 40 minutes
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Summary

Isolated chains adsorb in a much thinner  layer with 
Cu2+ than with Ni2+
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Possible interpretation



Possible interpretation

Binding by multiple histidines in case of Cu2+ , but His-48 or His-81 for Ni2+

His-113

His-116

His-36

His-48



Results:   B. Evidence for two stages 
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Subphase exchange shows irreversibility

50 µM myo.,  Cu(II)

diluted from 
50 µM to 1.4 µM

Irreversible in fully packed state!

Cu2+
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Subphase exchange shows irreversibility

60 µM myo,  Ni2+

diluted from 
60 µM to 10 µM

Irreversible even at moderate coverage with Ni2+

Ni2+



Results:   B. Evidence for two stages

Evidence #2. Different time scales for disruption of lipid packing 
structure and accumulation of adsorbed protein 

neutron and X-ray 
reflection
(amino acid 

concentration profile)

grazing incidence X-ray diffraction
(2-D crystal structure of lipid tails)

constant pressure - 40 mN/m



2 hrs after injection 
very little protein 

has adsorbed!
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Cu2+, 40 mN/m - Bragg Peak

At 0.25 hr after 
injection, 
crystallinity is no 
longer detected in 
the film!

Crystalline 
packing returns 
at ~ 5 hrs after 
injection
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Constant pressure - Bragg Rod

At 1 hr after 
injection, no 
crystallinity is 
detected in the 
film!

Crystalline 
packing returns 
at ~ 5 hrs after 
injection - tails 
are tilted

Prior to injection,  
tails are vertical, 
crystalline packing
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0.9 hrs after injecting myoglobin

Constant pressure

very little adsorbed protein:   thick. and  vol. fract. uncertain
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Constant pressure

3 .7 hrs after injecting myoglobin

protein layer can be observed!   thickness = 40 Å, vol. fract. = 0.31
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Ni2+, 40 mN/m - Bragg Peak
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Proposed interpretation

(a)

(b)

Initial stage - reversible 
adsorption

2nd stage - irreversible 
adsorption and lipid 
recrystallization



Summary

Grazing incidence scattering techniques provide insight into:

evolution of adsorbed layer structure

protein orientation

denaturation upon adsorption

effect of protein interactions on lipid film structure
initial stage - reversible
later stage - irreversible

Protein associations with lipid membranes:
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